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Abstract
Kowalevski’s curve of genus 2 is related to two other curves arising from the
solution of the Kowalevski top by the method of spectral curves in the case
when the angular momentum of the top is orthogonal to the gravity vector. One
is the Bobenko–Reyman–Semenov-Tian-Shansky curve of genus 2, the other
is the spectral curve of the Kuznetsov–Tsiganov Lax matrix, of genus 3. The
relations between the curves are given by correspondences, that is, multivalued
maps, inducing isogenies of the corresponding Jacobian or Prym varieties.

PACS numbers: 4530, 0210, 0365

In [LM] we studied two curves of genus 2, such that the equations of motion of the Kowalevski
top are linearized on their Jacobians: Kowalevski’s [Kow],

C1: u2 = x
(
(x −H)2 − 1

4I2
)(
(x −H)2 − 1

4I2 + 1
)

and the Bobenko–Reyman–Semenov-Tian-Shansky (BRS) curve [BRS]

C2: u2 = x
(
x2 + 2Hx + 1

4I2
)(
x2 + 2Hx + 1

4I2 − 1
)

where H is the Hamiltonian and I2 is Kowalevski’s integral of motion. Both equations are
written for the case when the angular momentum l is orthogonal to the gravity vector g, because
only in this case does the procedure of Bobenko–Reyman–Semenov-Tian-Shansky lead to a
genus-2 curve. We established an isogeny between the Jacobians J (Ci) by purely algebraic
means, using Richelot’s transformation of a genus-2 curve.

The curveC2 arises in a quite natural way when one applies the method of spectral curves to
the Lax representation of the Kowalevski top discovered by Reyman–Semenov-Tian-Shansky
[R-STS]. The curve C1 was found by Kowalevski as a result of an ingenious change of
variables, and it is quite surprising that no simple explanation of her trick, putting it within
the framework of a more general procedure, has been suggested over a period of more than
100 years. The results of [LM] show how Kowalevski’s curve appears from the spectral curve
of the Lax representation of Reyman–Semenov-Tian-Shansky. This gives a partial answer to
the above question. Now we will explain the relation of C1, C2 to the spectral curve B of
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another Lax representation: that of Kuznetsov–Tsiganov [KT]. The latter exists under the
same condition as that for the existence of C2: the scalar product (l, g) should be zero.

This relation is based on the transformation of Kowalevski’s curve into a genus-3 curve
introduced by Kuznetsov [K1, K2, KK] in his solution to the problem of separation of variables
for the Kowalevski top. Note that it exists for arbitrary (l, g), but we use it only in the case
(l, g) = 0. It yields the following diagram of morphisms of (smooth compact complex)
curves:

C1
f←−−−− B1

π

�
E1

(1)

where g(C1) = 2, g(B1) = 3, g(E1) = 1, and f, π are double coverings; f is unramified, and
π is ramified at four points.

We prove that the diagram induces an isogeny P(B1/E1) −→ J (C1) with kernel of order
eight and another one J (C1) −→ P(B1/E1) in the opposite direction with kernel of order
two. Next, we fulfil a parallel construction for another curve of genus 3, namely, the spectral
curve B2 = B of the Kuznetsov–Tsiganov L-matrix:

C ′2
f̃←−−−− B2

π̃

�
E2

(2)

where the genera of curves and the properties of the morphisms are the same as in the preceding
diagram. It turns out that C ′2 is nothing else but the BRS curve C2. So, we find another pair
of isogenies between P(B2/E2), J (C2) with kernels of orders two and eight. Combining
them with the Richelot isogeny J (C2) −→ J (C1) (with kernel of order four), we obtain an
isogeny between the Prym varieties P(Bi/Ei) with kernel of order 64. It factors through
the multiplication by 2, hence there also exists an isogeny between P(Bi/Ei) of degree
four.

To summarize, we have the following relations between the above curves. The curves B2,
C2 are ‘natural’ in the sense that they come from a general technique of integrable systems
(method of spectral curves) but this general technique is applied to different Lax matrices. B2,
C2 are related to each other by the analogue of Kuznetsov’s transformation, which he originally
applied to the other pair of curves B1, C1. Now, B1, C1 cannot be obtained by the method of
spectral curves from the known Lax representations. Nonetheless, C1, C2 are connected by
Richelot’s transformation, so B1, C1 become indirectly related to B2, C2. Note that for generic
constants of motionH, I2, there are no non-trivial maps between any two curves from different
triples Bi, Ci, Ei , i = 1, 2, but there exists a (2, 2)-correspondence C1 ←→ C2. One can see
that the curves E1, E2, as well as the Jacobian threefolds J (B1), J (B2), are not isogeneous,
though the latter ones contain isogeneous Abelian surfaces P(Bi/Ei).

One can think of Kuznetsov’s transformation as a way to pass from the Jacobian of a
curve of genus 2 to an isogeneous Prym variety of a double covering B −→ E of a genus-3
curve over an elliptic curve. As such, it represents a particular case of Audin’s construction,
described in section 5.3 of her book [Au].
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1. Generalities

We will use the notation and the normalization of dimensional parameters from [BRS]. The
top represents a solid with a fixed point O in a constant gravity field. There are six dynamical
variables: three components of the angular momentum l = (l1, l2, l3) and three components
of the gravity vector g = (g1, g2, g3), everything with respect to a moving orthonormal frame,
attached to the solid. The motion of the top can be described by the following system:

dl

dt
= [l, ω] + [c, g]

dg

dt
= [g, ω]

l = Iω

(3)

where c is the constant vector of the centre of mass and I is the inertia tensor. The system (3)
is Hamiltonian with respect to the Poisson brackets

{li , lj } = εijklk {li , gj } = εijkgk {gi, gj } = 0.

In Kowalevski’s integrable case, the principal inertia moments have the ratio 2m : 2m : m
and c lies in the plane, perpendicular to the symmetry axis. One can normalize the parameters
so that I = diag(1, 1, 1

2 ), c = (1, 0, 0) and |g| = 1. The problem possesses a trivial integral
of motion, the scalar product (l, g), which we will consider as a parameter. Fixing its value
(l, g) = δ, we obtain a four-dimensional phase space, which is a symplectic manifold. The
Hamiltonian

H = 1
2 (l

2
1 + l22 + 2l23)− g1

Poisson commutes with another, Kowalevski’s first integral

I2 =
(
l21 − l22 + 2 g1

)2
+ 4 (l1l2 + g2)

2

and the common level sets of H, I2 represent the Liouville tori in our symplectic 4-fold.
The first step of Kowalevski’s solution to the problem is the complexification: she

considers x = l1 + il2, y = l1 − il2 as independent complex variables. Next she makes
her famous change of variables ξ1 = ξ1(x, y), ξ2 = ξ2(x, y), which we will not specify here.
It brings the system (3) to the form

dξ1/dt

η1
+

dξ2/dt

η2
= 0

ξ1dξ1/dt

η1
+
ξ2dξ2/dt

η2
= √−2 (4)

where the two points (ξi, ηi), i = 1, 2, belong to Kowalevski’s curve C1 of genus 2

η2 = [
ξ
(
(ξ −H)2 + 1− 1

4I2
)− δ2

](
(ξ −H)2 − 1

4I2
)
.

Equations (4) represent thus a system of ODE on the symmetric square Sym2(C1) of C1. The
Abel–Jacobi map

AJ : Sym2 C1 −→ J (C1) = "∗C1
/H1(C1,Z)

(P1, P2) �→
∫ P1

P0

+
∫ P2

P0

modH1(C1,Z)

maps birationally the symmetric square onto the Jacobian J (C1); here the integrals are
considered as linear functionals on the space "C1 of holomorphic 1-forms, defined modulo
the period lattice H1(C1,Z). This allows us to consider (4) as the linearized system
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Ẋ = V0 = constant on the Jacobian, where V0 = (0,
√−2) in the basis of T0J (C1) = "∗C1

,
dual to the basis (dξ/η, ξ dξ/η) of "C1 .

The method of spectral curves, applied to the Lax representation of Reyman–Semenov-
Tian-Shansky, brings us to a similar linearized equation Ẏ = W0 = constant on the Prym

variety P(C2/E2) of a double unramified covering of curves C2
2:1−→ E2. Generically, the

genera of C2, E2 are equal to 3 and 1, respectively. However, if we restrict ourselves to the
symplectic leaf δ = 0, we have g(C2) = 2, g(E2) = 0, so the Prymian P(C2/E2) becomes
simply the Jacobian J (C2). In this case we find two different curves of genus 2 with the same
property that the Hamiltonian flow of the Kowalevski top is linearized on their Jacobians: C1

and C2. The authors of [BRS] wrote out the equation of C2 and raised the question concerning
the relation between the two curves. We will call C2 the Bobenko–Reyman–Semenov-Tian-
Shansky (BRS) curve. Note that none of the Jacobians is isomorphic to the complex Liouville
torus, but only isogeneous to it.

The following theorem is the main result of [LM].

Theorem 1. Assume δ = 0, that is l ⊥ g. Then C1, C2 are related by the Richelot
transformation which induces an isogeny ψ : J (C2) −→ J (C1) with kernel Z/2Z ⊕ Z/2Z.
This isogeny transforms the flow of W0 into that of V0.

We will describe briefly the way in which the curveC2 appears and postpone the definition
of the Richelot isogeny until the next section.

The Lax pair of Reyman–Semenov-Tian-Shansky yields a more general system, called
the Kowalevski gyrostat. If we set the gyrostatic terms to 0, we will obtain the equation

dL

dt
= [L,M] (5)

with the Lax matrix

L(λ) = 1

λ




g1 g2 g3 0
g2 −g1 0 −g3

g3 0 −g1 g2

0 −g3 g2 g1


 +




0 0 −l2 −l1
0 0 l1 −l2
l2 −l1 0 −2l3
l1 l2 2l3 0




+λ




0 0 0 0
0 0 0 0
0 0 −2 0
0 0 0 −2




where [L,M] = LM −ML for some matrix M , which we will not make explicit here. The
functions H, δ2 and I2 belong to the algebra generated by the coefficients of λ−2 and λ0 in the
Laurent expansions of Tr(L(λ)2) and Tr(L(λ)4). Since these coefficients are invariant under
the flow of (5), the spectral curve P(λ,µ) = 0 is also invariant, where

P(λ,µ) = det(L(λ)− µ).

Let , be the non-singular compactification of the spectral curve, and L(t) a solution of (5).
Then we have the line bundle Et of eigenvectors of L(t) on ,. It is defined a priori on a
Zariski open subset of ,, but it is uniquely extended to all of , as a line subbundle of the trivial
vector bundle C

4 × ,. According to [Au], section 3.2.3, the degree of Et is eight, so that the
isomorphism class [Et ] is an element of Pic8(,). Choosing a reference point P0 ∈ C2, we
can write Pic8(,) = 8[P0] + J (,), which identifies Pic8(,) with J (,), hence the evolution
equation for [Et ] can be written on J (,). The following theorem is proved in [BRS].
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Theorem 2 (Bobenko–Reyman–Semenov-Tian-Shansky). The evolution equation for [Et ]
has the form

d[Et ]

dt
= W0 = constant (6)

where the vector W0 ∈ "∗, is given via its values on the elements ω of the dual space:

〈ω|W0〉 =
∑

P :λ(P )=∞
ResP

(
1
2µω

)
.

Further, , possesses two commuting involutions, changing the signs of coordinates:

τ1 : (λ, µ) �→ (−λ,µ) τ2 : (λ, µ) �→ (λ,−µ).
Let C2 = ,/〈τ1〉, E = ,/〈τ1, τ2〉 be the quotients. Then the flow of (6) is constrained to the

image π∗ Pic4(C2) ⊂ Pic8(,) and tangent to P(C2/E), where π : ,
2:1−→ C2 is the quotient

map.

From now on, we assume δ = 0. Then, as we mentioned above, the genus of C2 is 2 and
P(C2/E) = J (C2). By an appropriate change of variables (λ2, µ) → (x, y), the authors of
[BRS] bring the equation of C2 to the standard form

y2 = x
(
x2 + 2Hx + 1

4I2
)(
x2 + 2Hx + 1

4I2 − 1
)
. (7)

The application of the formula for W0 from the above theorem yields W0 = (0,−√2) in
the basis of "∗C2

, dual to (dx/y, x dx/y).

2. Richelot’s transformation of the BRS curve

Richelot’s transformation was first introduced in 1836 by Richelot [R1, R2] in the problem of
the approximate calculation of hyperelliptic integrals of genus 2. By an appropriate iteration
of this transformation, he obtained a sequence of genus-2 curves converging very rapidly to
a rational curve, which allowed us to approximate the hyperelliptic integrals by integrals of
rational functions. Later the Richelot transform reappeared in 1901, in the work of Humbert
[H], where he studied its action on two-dimensional theta-functions (see [BM, CF] for more
details).

Let C be a genus-2 curve defined by an equation

y2 = P1(x)P2(x)P3(x)

where Pj (x) are quadratic polynomials without multiple or common roots in P
1(C). The fact

that we are looking at the roots in P
1(C) rather than those in C means that we admit the case

when one of the quadratic polynomials is, in fact, linear, and then∞ is one of its roots. Let
C ′ be the curve defined by the equation

.y2
1 = U1(z)U2(z)U3(z)

where

Ui+2(z) = [Pi, Pi+1] = P ′i (z)Pi+1(z)− Pi(z)P
′
i+1(z)

(addition of subscripts modulo 3) and . = det(P1P2P3) is the determinant of the 3×3 matrix
of coefficients of the Pi . C ′ is called the Richelot transform of C. It depends on the partition
of the six roots of the degree six polynomial defining C into three pairs. If one reapplies the
Richelot transform to C ′ with the natural partition into pairs, again one will find C up to the
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scaling of the variable y, so that the Richelot transform is an involution in this case. However,
if one changes the partition on each step, one can obtain an infinite sequence of non-isomorphic
curves.

The ubiquity of the Richelot transform is in the possibility to transport the Abelian
differentials from one curve to the other. The standard way to transport the 1-forms from
one variety to another is the pullback with respect to a map between them. In our case,
this does not work: there are no non-constant maps between C and C ′. However, there is a
nice substitute for a map—a (2, 2)-correspondence. It is a curve Z ⊂ C × C ′ with double
projections to both factors (one can think of it as the graph of a bivalued map from C to C ′, or
in the opposite direction, from C ′ to C). It is defined by the explicit equations

Z =
{
P1(x)U1(z) + P2(x)U2(z) = 0

yy1 = P1(x)U1(z)(x − z).

Some other equations satisfied on the same set Z

y1P2P3 = U1y(x − z) y1P1P3 = −U2y(x − z)

yU2U3 = .P1y1(x − z) yU1U3 = −.P2y1(x − z)

and the identity

P1(x)U1(z) + P2(x)U2(z) + P3(x)U3(z) + (x − z)2. ≡ 0 ∀ (x, z) ∈ C
2

are useful in the proofs.
The induced map δZ : "C ′ −→ "C between the two-dimensional vector spaces of 1-forms

is defined by δZ = p1∗p∗2 , where p1, p2 are the natural projections from Z to C, respectively
C ′, p∗2 is the usual pullback of exterior forms and p1∗ is the trace map for the unramified double
covering p1, a particular case of the integration over the fibres of a smooth map. This map δZ
is calculated in [BM]: δZ

(
S(z) dz

y1

) = S(x) dx
y

for S a polynomial of degree �1.
Besides the transformation of Abelian differentials, the correspondence induces an isogeny

ψZ : J (C) −→ J (C ′) between the Jacobians of the two curves. For the definition, represent
J (C) as the Abelian group of divisor classes

[ ∑
niPi

]
modulo divisors of meromorphic

functions, where Pi ∈ C are points of the curve, and ni are integers such that
∑

ni = 0. Then
define

ψZ

([ ∑
niPi

])
=

[ ∑
nip2p

−1
1 Pi

]
.

The Abel–Jacobi isomorphism

AJ : J (C) −→ "∗C/H1(C,Z)[ ∑
niPi

]
�→

∑
ni

∫ Pi

P0

modH1(C,Z)

together with the Newton–Leibnitz rule of derivation of the integral with respect to the upper
limit implies that δZ = (d0ψZ)

∗, the adjoint of the differential of ψZ . This proves the assertion
of theorem 1 concerning the transformation of the flows of V0,W0.

The following lemma gives the kernel of ψZ which will be used in section 4.

Lemma 1. Let ai, a′i be the roots of the polynomial Pi(x), i = 1, 2, 3. Then the kernel of ψZ

is the subgroup {0, [(a1, 0)− (a′1, 0)], [(a2, 0)− (a′2, 0)], [(a3, 0)− (a′3, 0)]} � (Z/2Z)⊕2 of
the group J (C)2 � (Z/2Z)⊕4 of points of order two in J (C).
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Proof. The inclusion ‘⊃’ is obvious. Indeed, p2p
−1
1 ((ai, 0)) = p2p

−1
1 ((a′i , 0)) =

{(ui, 0), (u′i , 0)}, where ui, u
′
i are the roots of Ui(z), hence p2p

−1
1 ((ai, 0) − (a′i , 0)) = 0.

The opposite inclusion follows from the observation that the iteration of the Richelot isogeny

J (C)
ψ−→ J (C ′)

ψ ′−→ J (C ′′) produces the map of multiplication by 2 on the Jacobian ofC ′′ � C,
and its kernel J (C)2 contains 16 elements. Hence | ker ψ | = | ker ψ ′| = 4. �

Now apply the Richelot transform to the BRS curve C = C2 with P1(x) = x,
P2(x) = x2 + 2Hx + 1

4I2, P3(x) = x2 + 2Hx + 1
4I2 − 1. We will obtain the curve

y2
1 = −2(z + H)

(
z2 + 1− 1

4I2
)(
z2 − 1

4I2
)

which differs from Kowalevski’s curve for δ = 0 only by the transformation η = √−2y1, ξ =
z + H .

3. Kuznetsov–Tsiganov Lax representation

The authors of [KT] start from the (2 × 2) Lax matrix for the Neumann system with one
spectral parameter u

LN =


 u2 − 2 l3 u− l21 − l22 −

2α

g2
3

ib ((g1 + ig2) u− g3 (l1 + il2))

ib ((g1 − ig2) u− g3 (l1 − il2)) b2g2
3




having for Hamiltonian

HN = 1
2 (l

2
1 + l22 − b2g2

3) +
α

g2
3

.

They construct from it a Lax matrix for the Kowalevski–Goryachev–Chaplygin top (as
before, δ = (l, g) = 0) using the following formula:

LKGCT = K+(u + 2iκ)LN(u)K−(u− 2iκ)σ2L
t
N(−u)σ2

where

κ = H 2 − 1
4I2 + 1

2

K−(u) =
[

α1 u

−β1u α1

]
K+(u) =

[
α2 β2u

−u α2

]
αi, βi ∈ C.

The Hamiltonian has the form

HKGCT = 1

2
(l21 + l22 + 2l23) + c1g1 + c2g2 + c3(g

2
1 − g2

2) + c4g1g2 +
c5

g2
3

where

c1 = 1
2 ib(α2 − α1) c2 = 1

2b(α1 + α2) c3 = − 1
4b

2(β1 + β2)

c4 = 1
2 ib2(β2 − β1) c5 = α.

One obtains the Kowalevski top from this by putting

α1 = i α2 = −i b = 1
2 β1 = β2 = α = 0.

It yields the following spectral curve:

B =
{
λ +

1

λ
= −4(u4 − 2Hu2 + κ̃)

}
κ̃ = 1

4I2 − 1
2 . (8)

In the next section, we will relate it to the curves of genus 2 C1, C2 introduced above.
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4. Kuznetsov’s transformation

Let

C1 = {η2 = P5(ξ)}
P5(ξ) = ξ

(
(ξ −H)2 + 1− 1

4I2
)(
(ξ −H)2 − 1

4I2
)

be the Kowalevski curve for the case (l, g) = 0. Kowalevski’s equations (4) represent a system
of two ODEs in two independent variables ξi , and ηi can be eliminated by ηi =

√
P5(ξi).

Kuznetsov introduces the new unknown functions—the canonically conjugated momenta
pi = 2

∫
∂H

∂ξ̇i

dξ̇i
ξ̇i

, which allow us to separate variables in (4). The relation between pi and

ξi is transcendental, but if we introduce λi = exp(±2
√−2ξipi), then the pair λi,

√±ξi will
satisfy an algebraic relation which is an equation of a genus-3 curve. Let us fix the choices of
signs, which determine the change of variables and our new genus-3 curve B1:

u =
√
ξ

λ = 2η +
√

4η2 + ξ

ξ

B1 =
{
λ +

1

λ
= 4(u4 − 2Hu2 + κ)

}

where κ = H 2 + 1
2 − 1

4I2. We solve the quadratic equation in λ to write down the equation
of B1 in the standard hyperelliptic form µ2 = P8(u), where µ = λ− 2(u4 − 2Hu2 + κ) and
4P8(u) is the discriminant. We have

u =
√
ξ

µ = 2η√
ξ

ξ = u2

η = µu

2

(9)

B1 =
{
µ2 = 4

(
u4 − 2Hu2 + κ − 1

2

)(
u4 − 2Hu2 + κ + 1

2

)}
. (10)

The elliptic curve E1 and the map π from the diagram (1) are obtained by substituting
ξ = u2 in (10), whereas formulae (9) define the map f . One can immediately verify that f is
unramified and π is ramified at four points (0,±µ0), (∞,±∞), where µ0 =

√
4κ2 − 1. The

Prym variety P(B1/E1), by definition, is the connected component of 0 in the kernel of the
mapπ∗ : J (B1) −→ J (E1) and can be understood as the subvariety of J (B1) of divisor classes[ ∑

k((uk, µk)− (−uk, µk))
]
. As dim P(B1/E1) = 2 in our case, the sums with k taking only

two values 1, 2 will suffice. One can easily see that P(B1/E1) coincides with the image of
f ∗ : J (C1) −→ J (B1). Indeed, the inclusion im f ∗ ⊂ ker π∗ follows from the observation
that the class of the divisor π∗ ◦ f ∗((ξ, η) + (ξ ′, η′)) is constant in Pic4(E1), namely, it is the
lift of the class of degree two from P

1 via the double covering map E1 −→ P
1, (ξ, µ) �→ ξ .

The opposite inclusion follows from the fact that the kernel of f ∗ is finite, which we will now
prove.

Let f∗ : J (B1) −→ J (C1) be the natural map and ϕ = f∗|P(B1/E1). Then ϕ ◦ f ∗ =
f∗ ◦ f ∗ = 2 idJ (C1), hence the kernels of ϕ, f ∗ are sums of a number of copies of Z/2Z, so
that | ker ϕ| · | ker f ∗| = | ker 2 idJ (C1) | = 16.

It is easy to determine directly the kernel of f ∗. We have f ∗(KC1) = KB1 , where K

denotes the canonical divisor class of a curve. In order to deal with positive divisors, we will
look at (f ∗)−1KB1 , rather than (f ∗)−1(0). We have (f ∗)−1KB1 ⊂ 1

2 (2KC1), where the last



Kowalevski top and genus-2 curves 2133

expression is a notation for the set of all the 16 halves of the divisor class 2KC1 . They can be
represented by KC1 itself and 15 other divisors (ξi, 0) + (ξj , 0), 1 � i, j � 6, i �= j , where
ξi runs over five roots of P5(ξ) and ∞; let us number them so that ξ5 = 0, ξ6 = ∞. If we
apply f ∗ to any of these 15 divisors, we will obtain a divisor of degree four, and we have to
determine whether it lies in the canonical linear system |KB1 | or not. Since any 1-form on B1

can be written as (a + bu + cu2) du
µ

, the positive canonical divisors are exactly the sums of four
points of the form (u1, µ1) + (u2, µ2) + (u1,−µ1) + (u2,−µ2). Only (0, 0) + (∞, 0), among
the 15 non-trivial halves of 2KC1 , provides a divisor of such a form. Hence ker f ∗ � Z/2Z

and | ker ϕ| = 8.
One can identify the kernel of f ∗ in a different way. The following assertion reproduces

lemma 5.3.2 from the appendix to [Au].

Lemma 2. Let Z be a non-singular curve, D an element of order two in Pic0(Z). Let
f : Y −→ Z be the unramified double covering defined by D. Then the kernel of the
map

f ∗ : Pic(Z) −→ Pic(Y )

is the subgroup of order two, generated by D.

This lemma implies that our double covering f : B1 −→ C1 is defined by the 2-torsion
element D = [(0, 0)− (∞, 0)] ∈ J (C1). Note that Audin mentions Kuznetsov’s curve B1 in
the last lines of her book, but does not identify it as such (her notation for B1 is X̃). Audin also
provides a coordinate-free construction of B1: it is the normalization of the Cartesian product
E1 ×P1 C1 (see loc.cit., proposition 5.3.1).

Corollary 1. The Prym variety P(B1/E1) is isomorphic to the quotient of J (C1) by the
subgroup generated by the element D of order two which defines the unramified covering
map f .

The kernel of ϕ can be identified as the set of divisor classes [f ∗((ξi, 0) − (ξj , 0))],
1 � i, j � 6, i �= j , among which there are only eight distinct ones. They form a subgroup
(Z/2Z)⊕3 of the group P(B1/E1)2 � (Z/2Z)⊕4 of points of order two in P(B1/E1). Note
that ϕ(P (B1/E1)2) = {0,D}, and that the Richelot isogeny R : J (C1) −→ J (C2) transforms
D into 0. Hence P(B1/E1)2 ⊂ ker(R ◦ ϕ). The composition R ◦ ϕ thus factors through the
multiplication by 2 on P(B1/E1).

Now, similarly, consider the spectral curveB = B2 from the previous section and complete
it to the diagram (2) in using formulae, analogous to (9) and (10). We are using the same
characters for the notation of variables, but mark them with tildes. We obtain

C ′2 =
{
η̃2 = ξ̃

(
ξ̃ 2 − 2Hξ̃ + 1

4I2
)(
ξ̃ 2 − 2Hξ̃ + 1

4I2 − 1
)}

(11)

ũ =
√
ξ̃

µ̃ = 2η̃√
ξ̃

ξ̃ = ũ2

η̃ = µ̃ũ

2

(12)

B2 =
{
µ̃2 = 4

(
ũ4 − 2Hũ2 + κ̃ − 1

2

)(
ũ4 − 2Hũ2 + κ̃ + 1

2

)}
. (13)

The change of the equation of B2 from the form (8) to (13) is given by µ̃ = λ + 2(u4 −
2Hu2 + κ̃), ũ = u. Equation (11) differs from the BRS equation (7) only by the signs of terms
with H . We can transform one to the other by the change of variables y = iη̃, x = −ξ̃ ; thus
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C ′2 � C2. The equation of E2 is obtained by the substitution of ũ2 = ξ̃ in (13). We can repeat
all the above arguments in replacing (1), (9), (10) by (2), (11)–(13).

We summarize the relations between the above curves in the following statement.

Theorem 3. Let the curves Bi, Ci, Ei and the maps f, f̃ , ϕ, ϕ̃ be defined as above. Then we
have the following sequence of isogenies:

P(B1/E1)
f∗−→ J (C1)

Richelot−−−−→ J (C2)
f̃ ∗−→ P(B2/E2)

of degrees eight, four and two, respectively, their kernels being direct sums of copies of Z/2Z.
The following assertions are verified.

(a) The composition P(B1/E1)
f∗−→ J (C1)

Richelot−−−−→ J (C2) is an isogeny of degree 32 whose
kernel contains all the points of order two of P(B1/E1). Hence it factors through the
multiplication by 2 on P(B1/E1), and there exists an isogeny P(B1/E1) −→ J (C2) of
degree two.

(b) The composition of all three isogenies is an isogeny of degree 64 which factors through
the multiplication by 2, hence there exists also an isogeny of order four P(B1/E1) −→
P(B2/E2) with kernel Z/2Z⊕ Z/2Z.
The same assertions hold for the maps in the opposite direction.

(c) The elliptic curves E1, E2 are non-isogeneous for generic constants of motion I2 and H .

The fact that the elliptic curves are non-isogeneous for generic constants of motion follows
from the observation that if we fix the value of I2 and vary H , then the j -invariant of E1 will
be constant, but that of E2 will vary. We can obtain a generic curve E2 by such a variation in
keeping E1 fixed, hence they are non-isogeneous.
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